Objective Revision Evaluation Service/reverted
One of the most critical concerns about Wikimedia's open projects is the detection and removal of damaging contributions. This model predicts whether or not an edit will be likely to need to be reverted. It is useful for quality control tools (e.g. en:WP:Huggle and en:User:ClueBot NG)
This model is trained to predict 'reverted' edits. Not all reverted edits are "vandalism". Consume scores with this in mind.
Contexts (wikis)
editArabic Wikipedia (arwiki)
edithttps://ores.wmflabs.org/v2/scores/arwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: min_samples_leaf=1, max_features="log2", n_estimators=700, learning_rate=0.01, presort="auto", verbose=0, min_weight_fraction_leaf=0.0, balanced_sample_weight=true, balanced_sample=false, center=true, max_leaf_nodes=null, max_depth=5, subsample=1.0, random_state=null, loss="deviance", init=null, warm_start=false, min_samples_split=2, scale=true - version: 0.3.0 - trained: 2017-01-06T19:06:15.589011 Table: ~False ~True ----- -------- ------- False 17964 1027 True 72 615 Accuracy: 0.944 Precision: ----- ----- False 0.996 True 0.375 ----- ----- Recall: ----- ----- False 0.946 True 0.896 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.514 ----- ----- ROC-AUC: ----- ----- False 0.963 True 0.967 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.602 0.928 0.093 True 0.229 0.926 0.088 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.068 0.984 0.98 True 0.97 0.057 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.028 1 0.966 True 0.97 0.057 0.987 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.028 1 0.966 True 0.827 0.697 0.455 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.028 1 0.966 True 0.114 0.951 0.177
Czech Wikipedia (cswiki)
edithttps://ores.wmflabs.org/v2/scores/cswiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: learning_rate=0.01, presort="auto", subsample=1.0, random_state=null, n_estimators=700, min_samples_leaf=1, verbose=0, max_depth=7, balanced_sample_weight=true, min_weight_fraction_leaf=0.0, loss="deviance", warm_start=false, init=null, min_samples_split=2, center=true, balanced_sample=false, max_leaf_nodes=null, scale=true, max_features="log2" - version: 0.3.0 - trained: 2017-01-06T19:12:50.748800 Table: ~False ~True ----- -------- ------- False 18141 1129 True 180 395 Accuracy: 0.934 Precision: ----- ----- False 0.99 True 0.259 ----- ----- Recall: ----- ----- False 0.941 True 0.685 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.376 ----- ----- ROC-AUC: ----- ----- False 0.919 True 0.92 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.904 0.746 0.094 True 0.272 0.773 0.096 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.147 0.987 0.98 True 0.957 0.065 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.972 True 0.957 0.065 1 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.972 True 0.86 0.32 0.467 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.972 True 0.191 0.824 0.159
German Wikipedia (dewiki)
edithttps://ores.wmflabs.org/v2/scores/dewiki/reverted?model_info
- type: GradientBoosting - params: min_weight_fraction_leaf=0.0, center=true, min_samples_split=2, balanced_sample=false, min_samples_leaf=1, subsample=1.0, scale=true, n_estimators=300, presort="auto", max_leaf_nodes=null, random_state=null, init=null, warm_start=false, max_depth=3, balanced_sample_weight=true, max_features="log2", learning_rate=0.1, verbose=0, loss="deviance" - version: 0.3.0 - trained: 2017-01-06T19:17:16.259241 Table: ~False ~True ----- -------- ------- False 16847 1983 True 254 729 Accuracy: 0.887 Precision: ----- ----- False 0.985 True 0.269 ----- ----- Recall: ----- ----- False 0.895 True 0.741 ----- ----- PR-AUC: ----- ----- False 0.99 True 0.451 ----- ----- ROC-AUC: ----- ----- False 0.889 True 0.888 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.835 0.586 0.096 True 0.54 0.733 0.097 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.282 0.933 0.98 True 0.967 0.075 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.023 1 0.952 True 0.956 0.113 0.951 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.023 1 0.952 True 0.876 0.425 0.471 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.023 1 0.952 True 0.258 0.848 0.156
English Wikipedia (enwiki)
edithttps://ores.wmflabs.org/v2/scores/enwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: min_samples_split=2, max_depth=7, balanced_sample_weight=true, warm_start=false, presort="auto", scale=true, learning_rate=0.01, random_state=null, max_features="log2", balanced_sample=false, init=null, verbose=0, center=true, loss="deviance", min_samples_leaf=1, n_estimators=700, min_weight_fraction_leaf=0.0, max_leaf_nodes=null, subsample=1.0 - version: 0.3.0 - trained: 2017-01-06T19:23:24.945358 Table: ~False ~True ----- -------- ------- False 15554 2560 True 457 962 Accuracy: 0.846 Precision: ----- ----- False 0.971 True 0.273 ----- ----- Recall: ----- ----- False 0.859 True 0.68 ----- ----- PR-AUC: ----- ----- False 0.984 True 0.424 ----- ----- ROC-AUC: ----- ----- False 0.866 True 0.867 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.852 0.597 0.096 True 0.605 0.583 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.688 0.768 0.98 True 0.94 0.039 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.054 1 0.929 True 0.926 0.071 0.947 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.054 1 0.929 True 0.758 0.378 0.455 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.054 1 0.929 True 0.157 0.898 0.155
English Wiktionary (enwiktionary)
edithttps://ores.wmflabs.org/v2/scores/enwiktionary/reverted?model_info
ScikitLearnClassifier - type: RF - params: oob_score=false, verbose=0, min_samples_split=2, min_samples_leaf=3, class_weight=null, center=true, n_estimators=320, max_depth=null, max_leaf_nodes=null, warm_start=false, balanced_sample=false, max_features="log2", n_jobs=1, balanced_sample_weight=true, random_state=null, criterion="entropy", bootstrap=true, min_weight_fraction_leaf=0.0, scale=true - version: 0.3.0 - trained: 2017-01-06T19:44:30.000302 Table: ~False ~True ----- -------- ------- False 19808 183 True 279 574 Accuracy: 0.978 Precision: ----- ----- False 0.986 True 0.76 ----- ----- Recall: ----- ----- False 0.991 True 0.675 ----- ----- PR-AUC: ----- ----- False 0.995 True 0.742 ----- ----- ROC-AUC: ----- ----- False 0.972 True 0.974 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.863 0.915 0.094 True 0.124 0.919 0.095 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.267 0.996 0.981 True 0.944 0.126 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.961 True 0.873 0.321 0.92 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.961 True 0.2 0.832 0.459 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.961 True 0.044 0.984 0.16
Spanish Wikipedia (eswiki)
edithttps://ores.wmflabs.org/v2/scores/eswiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: min_weight_fraction_leaf=0.0, max_leaf_nodes=null, verbose=0, init=null, subsample=1.0, presort="auto", random_state=null, balanced_sample=false, loss="deviance", scale=true, learning_rate=0.01, min_samples_split=2, max_features="log2", warm_start=false, balanced_sample_weight=true, n_estimators=700, center=true, min_samples_leaf=1, max_depth=7 - version: 0.3.0 - trained: 2017-01-06T19:51:18.041685 Table: ~False ~True ----- -------- ------- False 14751 2881 True 485 1697 Accuracy: 0.83 Precision: ----- ----- False 0.968 True 0.37 ----- ----- Recall: ----- ----- False 0.837 True 0.778 ----- ----- PR-AUC: ----- ----- False 0.983 True 0.584 ----- ----- ROC-AUC: ----- ----- False 0.901 True 0.901 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.75 0.726 0.099 True 0.643 0.658 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.686 0.757 0.98 True 0.957 0.047 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.067 0.997 0.901 True 0.937 0.1 0.919 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.035 1 0.892 True 0.643 0.657 0.453 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.035 1 0.892 True 0.053 0.983 0.154
Spanish Wikibooks (eswikibooks)
edithttps://ores.wmflabs.org/v2/scores/eswikibooks/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: subsample=1.0, balanced_sample_weight=true, init=null, min_samples_leaf=1, max_leaf_nodes=null, learning_rate=0.01, n_estimators=700, random_state=null, loss="deviance", center=true, verbose=0, warm_start=false, min_weight_fraction_leaf=0.0, presort="auto", max_depth=7, scale=true, balanced_sample=false, min_samples_split=2, max_features="log2" - version: 0.3.0 - trained: 2017-01-06T19:57:03.343720 Table: ~False ~True ----- -------- ------- False 16173 1164 True 129 1573 Accuracy: 0.932 Precision: ----- ----- False 0.992 True 0.574 ----- ----- Recall: ----- ----- False 0.933 True 0.924 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.818 ----- ----- ROC-AUC: ----- ----- False 0.976 True 0.978 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.401 0.943 0.095 True 0.166 0.96 0.096 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.196 0.97 0.981 True 0.98 0.109 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.016 1 0.915 True 0.96 0.359 0.908 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.016 1 0.915 True 0.112 0.97 0.466 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.016 1 0.915 True 0.015 0.996 0.178
Estonian Wikipedia (etwiki)
edithttps://ores.wmflabs.org/v2/scores/etwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: presort="auto", max_depth=7, min_samples_split=2, balanced_sample_weight=true, learning_rate=0.01, init=null, balanced_sample=false, verbose=0, min_samples_leaf=1, scale=true, max_leaf_nodes=null, subsample=1.0, loss="deviance", max_features="log2", n_estimators=500, warm_start=false, random_state=null, min_weight_fraction_leaf=0.0, center=true - version: 0.3.0 - trained: 2017-01-06T20:02:25.031504 Table: ~False ~True ----- -------- ------- False 18666 810 True 106 288 Accuracy: 0.954 Precision: ----- ----- False 0.994 True 0.263 ----- ----- Recall: ----- ----- False 0.958 True 0.728 ----- ----- PR-AUC: ----- ----- False 0.995 True 0.532 ----- ----- ROC-AUC: ----- ----- False 0.943 True 0.942 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.858 0.834 0.089 True 0.18 0.877 0.093 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.033 1 0.983 True 0.959 0.211 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.025 1 0.982 True 0.952 0.24 0.945 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.025 1 0.982 True 0.819 0.49 0.478 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.025 1 0.982 True 0.215 0.865 0.161
Persian Wikipedia (fawiki)
edithttps://ores.wmflabs.org/v2/scores/fawiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: presort="auto", center=true, scale=true, subsample=1.0, max_features="log2", balanced_sample_weight=true, min_weight_fraction_leaf=0.0, random_state=null, min_samples_leaf=1, verbose=0, warm_start=false, learning_rate=0.01, max_depth=7, balanced_sample=false, max_leaf_nodes=null, min_samples_split=2, loss="deviance", n_estimators=700, init=null - version: 0.3.0 - trained: 2017-01-06T20:09:09.014465 Table: ~False ~True ----- -------- ------- False 18405 935 True 167 297 Accuracy: 0.944 Precision: ----- ----- False 0.991 True 0.244 ----- ----- Recall: ----- ----- False 0.952 True 0.646 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.319 ----- ----- ROC-AUC: ----- ----- False 0.933 True 0.938 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.875 0.808 0.09 True 0.254 0.814 0.097 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.093 0.995 0.98 True 0.96 0.041 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.041 1 0.977 True 0.96 0.041 1 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.041 1 0.977 True 0.895 0.207 0.483 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.041 1 0.977 True 0.233 0.837 0.157
French Wikipedia (frwiki)
edithttps://ores.wmflabs.org/v2/scores/frwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: verbose=0, max_leaf_nodes=null, warm_start=false, scale=true, random_state=null, max_features="log2", presort="auto", min_samples_split=2, learning_rate=0.01, center=true, min_samples_leaf=1, max_depth=5, balanced_sample_weight=true, n_estimators=700, init=null, subsample=1.0, balanced_sample=false, loss="deviance", min_weight_fraction_leaf=0.0 - version: 0.3.0 - trained: 2017-01-06T20:26:23.424804 Table: ~False ~True ----- -------- ------- False 17260 1951 True 158 538 Accuracy: 0.894 Precision: ----- ----- False 0.991 True 0.216 ----- ----- Recall: ----- ----- False 0.898 True 0.772 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.438 ----- ----- ROC-AUC: ----- ----- False 0.914 True 0.914 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.799 0.733 0.09 True 0.533 0.779 0.096 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.151 0.976 0.98 True 0.954 0.086 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.04 1 0.966 True 0.95 0.102 0.976 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.04 1 0.966 True 0.866 0.424 0.461 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.04 1 0.966 True 0.273 0.858 0.158
Hebrew Wikipedia (hewiki)
edithttps://ores.wmflabs.org/v2/scores/hewiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: balanced_sample_weight=true, balanced_sample=false, max_depth=7, warm_start=false, loss="deviance", subsample=1.0, max_features="log2", max_leaf_nodes=null, min_samples_split=2, learning_rate=0.01, verbose=0, init=null, random_state=null, min_weight_fraction_leaf=0.0, center=true, scale=true, n_estimators=500, min_samples_leaf=1, presort="auto" - version: 0.3.0 - trained: 2017-01-06T20:31:51.924465 Table: ~False ~True ----- -------- ------- False 17245 1689 True 275 685 Accuracy: 0.901 Precision: ----- ----- False 0.984 True 0.289 ----- ----- Recall: ----- ----- False 0.911 True 0.714 ----- ----- PR-AUC: ----- ----- False 0.991 True 0.407 ----- ----- ROC-AUC: ----- ----- False 0.899 True 0.901 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.818 0.708 0.095 True 0.45 0.745 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.358 0.935 0.98 True 0.942 0.046 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.053 1 0.953 True 0.939 0.059 0.975 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.053 1 0.953 True 0.855 0.34 0.467 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.053 1 0.953 True 0.2 0.88 0.155
Hungarian Wikipedia (huwiki)
edithttps://ores.wmflabs.org/v2/scores/huwiki/reverted?model_info
ScikitLearnClassifier - type: RF - params: verbose=0, bootstrap=true, min_weight_fraction_leaf=0.0, max_leaf_nodes=null, warm_start=false, min_samples_leaf=13, oob_score=false, n_estimators=320, n_jobs=1, min_samples_split=2, balanced_sample_weight=true, class_weight=null, scale=true, criterion="entropy", max_features="log2", max_depth=null, balanced_sample=false, random_state=null, center=true - version: 0.3.0 - trained: 2017-01-06T20:53:22.021344 Table: ~False ~True ----- -------- ------- False 38248 990 True 218 372 Accuracy: 0.97 Precision: ----- ----- False 0.994 True 0.274 ----- ----- Recall: ----- ----- False 0.975 True 0.627 ----- ----- PR-AUC: ----- ----- False 0.995 True 0.37 ----- ----- ROC-AUC: ----- ----- False 0.929 True 0.929 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.912 0.761 0.095 True 0.147 0.8 0.093 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.067 1 0.986 True 0.922 0.074 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.067 1 0.986 True 0.922 0.074 0.992 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.067 1 0.986 True 0.794 0.31 0.467 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.067 1 0.986 True 0.221 0.749 0.169
Indonesian Wikipedia (idwiki)
edithttps://ores.wmflabs.org/v2/scores/idwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: init=null, balanced_sample=false, learning_rate=0.01, scale=true, warm_start=false, subsample=1.0, max_leaf_nodes=null, max_depth=5, random_state=null, balanced_sample_weight=true, presort="auto", min_weight_fraction_leaf=0.0, loss="deviance", verbose=0, max_features="log2", min_samples_leaf=1, min_samples_split=2, n_estimators=700, center=true - version: 0.3.0 - trained: 2017-01-06T21:32:36.621853 Table: ~False ~True ----- -------- ------- False 85465 12234 True 258 2014 Accuracy: 0.875 Precision: ----- ----- False 0.997 True 0.141 ----- ----- Recall: ----- ----- False 0.875 True 0.886 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.27 ----- ----- ROC-AUC: ----- ----- False 0.94 True 0.945 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.533 0.865 0.098 True 0.616 0.849 0.099 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.076 0.995 0.98 True 0.952 0.011 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.047 1 0.977 True 0.952 0.011 1 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.047 1 0.977 True 0.927 0.105 0.468 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.047 1 0.977 True 0.554 0.869 0.152
Italian Wikipedia (itwiki)
edithttps://ores.wmflabs.org/v2/scores/itwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: center=true, min_weight_fraction_leaf=0.0, balanced_sample=false, learning_rate=0.01, verbose=0, max_leaf_nodes=null, random_state=null, max_depth=7, scale=true, loss="deviance", subsample=1.0, min_samples_split=2, max_features="log2", balanced_sample_weight=true, min_samples_leaf=1, n_estimators=700, init=null, presort="auto", warm_start=false - version: 0.3.0 - trained: 2017-01-06T21:38:17.924898 Table: ~False ~True ----- -------- ------- False 16471 2397 True 252 639 Accuracy: 0.866 Precision: ----- ----- False 0.985 True 0.211 ----- ----- Recall: ----- ----- False 0.873 True 0.717 ----- ----- PR-AUC: ----- ----- False 0.992 True 0.334 ----- ----- ROC-AUC: ----- ----- False 0.898 True 0.902 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.853 0.724 0.094 True 0.595 0.641 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.394 0.906 0.98 True 0.936 0.042 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.053 1 0.956 True 0.934 0.046 0.988 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.053 1 0.956 True 0.844 0.21 0.474 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.053 1 0.956 True 0.211 0.874 0.154
Dutch Wikipedia (nlwiki)
edithttps://ores.wmflabs.org/v2/scores/nlwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: subsample=1.0, min_samples_split=2, n_estimators=700, verbose=0, balanced_sample_weight=true, warm_start=false, random_state=null, max_features="log2", init=null, max_leaf_nodes=null, presort="auto", center=true, learning_rate=0.01, min_weight_fraction_leaf=0.0, min_samples_leaf=1, scale=true, max_depth=7, balanced_sample=false, loss="deviance" - version: 0.3.0 - trained: 2017-01-06T21:44:14.717645 Table: ~False ~True ----- -------- ------- False 16884 1379 True 277 924 Accuracy: 0.915 Precision: ----- ----- False 0.984 True 0.401 ----- ----- Recall: ----- ----- False 0.924 True 0.77 ----- ----- PR-AUC: ----- ----- False 0.992 True 0.593 ----- ----- ROC-AUC: ----- ----- False 0.928 True 0.929 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.865 0.755 0.098 True 0.305 0.831 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.349 0.942 0.98 True 0.959 0.114 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.032 1 0.942 True 0.943 0.196 0.922 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.032 1 0.942 True 0.673 0.705 0.453 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.032 1 0.942 True 0.101 0.931 0.156
Norwegian Wikipedia (nowiki)
edithttps://ores.wmflabs.org/v2/scores/nowiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: balanced_sample=false, min_weight_fraction_leaf=0.0, min_samples_leaf=1, init=null, max_features="log2", scale=true, random_state=null, presort="auto", max_leaf_nodes=null, warm_start=false, verbose=0, loss="deviance", min_samples_split=2, center=true, balanced_sample_weight=true, n_estimators=500, max_depth=7, subsample=1.0, learning_rate=0.01 - version: 0.3.0 - trained: 2017-01-06T22:08:36.437323 Table: ~False ~True ----- -------- ------- False 38123 1102 True 141 626 Accuracy: 0.969 Precision: ----- ----- False 0.996 True 0.363 ----- ----- Recall: ----- ----- False 0.972 True 0.817 ----- ----- PR-AUC: ----- ----- False 0.995 True 0.581 ----- ----- ROC-AUC: ----- ----- False 0.964 True 0.963 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.807 0.89 0.092 True 0.182 0.902 0.091 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.022 1 0.982 True 0.974 0.116 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.021 1 0.982 True 0.97 0.175 0.923 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.021 1 0.982 True 0.812 0.712 0.455 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.021 1 0.982 True 0.183 0.902 0.165
Polish Wikipedia (plwiki)
edithttps://ores.wmflabs.org/v2/scores/plwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: subsample=1.0, min_samples_leaf=1, max_leaf_nodes=null, init=null, balanced_sample=false, verbose=0, center=true, random_state=null, loss="deviance", presort="auto", n_estimators=700, learning_rate=0.01, min_weight_fraction_leaf=0.0, min_samples_split=2, balanced_sample_weight=true, warm_start=false, max_features="log2", max_depth=5, scale=true - version: 0.3.0 - trained: 2017-01-06T22:22:13.325027 Table: ~False ~True ----- -------- ------- False 34941 3588 True 276 1155 Accuracy: 0.903 Precision: ----- ----- False 0.992 True 0.244 ----- ----- Recall: ----- ----- False 0.907 True 0.807 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.42 ----- ----- ROC-AUC: ----- ----- False 0.928 True 0.929 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.746 0.794 0.096 True 0.471 0.819 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.121 0.973 0.98 True 0.954 0.042 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.042 1 0.965 True 0.953 0.054 0.969 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.042 1 0.965 True 0.902 0.366 0.455 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.042 1 0.965 True 0.259 0.898 0.153
Portuguese Wikipedia (ptwiki)
edithttps://ores.wmflabs.org/v2/scores/ptwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: presort="auto", verbose=0, warm_start=false, min_samples_split=2, max_features="log2", random_state=null, max_leaf_nodes=null, loss="deviance", init=null, min_samples_leaf=1, subsample=1.0, center=true, n_estimators=700, min_weight_fraction_leaf=0.0, balanced_sample_weight=true, balanced_sample=false, learning_rate=0.01, scale=true, max_depth=7 - version: 0.3.0 - trained: 2017-01-06T22:36:08.809695 Table: ~False ~True ----- -------- ------- False 14777 3022 True 370 1644 Accuracy: 0.829 Precision: ----- ----- False 0.976 True 0.352 ----- ----- Recall: ----- ----- False 0.83 True 0.817 ----- ----- PR-AUC: ----- ----- False 0.985 True 0.546 ----- ----- ROC-AUC: ----- ----- False 0.905 True 0.907 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.721 0.757 0.097 True 0.673 0.649 0.099 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.59 0.805 0.98 True 0.952 0.035 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.056 0.999 0.903 True 0.926 0.098 0.935 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.036 1 0.899 True 0.701 0.602 0.456 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.036 1 0.899 True 0.057 0.986 0.158
Russian Wikipedia (ruwiki)
edithttps://ores.wmflabs.org/v2/scores/ruwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: balanced_sample=false, warm_start=false, min_weight_fraction_leaf=0.0, presort="auto", center=true, random_state=null, max_depth=5, loss="deviance", verbose=0, subsample=1.0, min_samples_leaf=1, balanced_sample_weight=true, init=null, max_leaf_nodes=null, min_samples_split=2, n_estimators=700, learning_rate=0.01, scale=true, max_features="log2" - version: 0.3.0 - trained: 2017-01-06T22:52:45.773825 Table: ~False ~True ----- -------- ------- False 15893 2796 True 220 826 Accuracy: 0.847 Precision: ----- ----- False 0.986 True 0.229 ----- ----- Recall: ----- ----- False 0.85 True 0.789 ----- ----- PR-AUC: ----- ----- False 0.991 True 0.382 ----- ----- ROC-AUC: ----- ----- False 0.895 True 0.897 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.767 0.709 0.097 True 0.702 0.664 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.306 0.904 0.98 True 0.929 0.054 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.062 1 0.949 True 0.922 0.069 0.952 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.062 1 0.949 True 0.855 0.283 0.461 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.062 1 0.949 True 0.232 0.889 0.155
Swedish Wikipedia (svwiki)
edithttps://ores.wmflabs.org/v2/scores/svwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: max_features="log2", warm_start=false, subsample=1.0, max_leaf_nodes=null, random_state=null, min_samples_split=2, n_estimators=500, init=null, max_depth=7, loss="deviance", learning_rate=0.01, scale=true, balanced_sample_weight=true, center=true, min_samples_leaf=1, verbose=0, min_weight_fraction_leaf=0.0, presort="auto", balanced_sample=false - version: 0.3.0 - trained: 2017-01-06T23:13:40.455191 Table: ~False ~True ----- -------- ------- False 37978 1244 True 124 601 Accuracy: 0.966 Precision: ----- ----- False 0.997 True 0.326 ----- ----- Recall: ----- ----- False 0.968 True 0.83 ----- ----- PR-AUC: ----- ----- False 0.995 True 0.598 ----- ----- ROC-AUC: ----- ----- False 0.969 True 0.971 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.761 0.904 0.093 True 0.231 0.899 0.084 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.025 1 0.984 True 0.971 0.165 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.024 1 0.983 True 0.966 0.199 0.931 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.024 1 0.983 True 0.834 0.691 0.47 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.024 1 0.983 True 0.238 0.899 0.173
Turkish Wikipedia (trwiki)
edithttps://ores.wmflabs.org/v2/scores/trwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: n_estimators=700, warm_start=false, learning_rate=0.01, max_features="log2", random_state=null, max_leaf_nodes=null, presort="auto", min_samples_leaf=1, min_samples_split=2, init=null, min_weight_fraction_leaf=0.0, center=true, scale=true, max_depth=7, balanced_sample=false, subsample=1.0, loss="deviance", verbose=0, balanced_sample_weight=true - version: 0.3.0 - trained: 2017-01-06T23:19:07.190955 Table: ~False ~True ----- -------- ------- False 14975 2496 True 350 1910 Accuracy: 0.856 Precision: ----- ----- False 0.977 True 0.434 ----- ----- Recall: ----- ----- False 0.857 True 0.845 ----- ----- PR-AUC: ----- ----- False 0.985 True 0.554 ----- ----- ROC-AUC: ----- ----- False 0.916 True 0.919 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.724 0.804 0.098 True 0.712 0.738 0.099 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.586 0.842 0.98 True 0.937 0.02 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.101 0.99 0.901 True 0.934 0.029 0.966 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.061 1 0.887 True 0.591 0.808 0.452 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.061 1 0.887 True 0.044 0.993 0.163
Ukrainian Wikipedia (ukwiki)
edithttps://ores.wmflabs.org/v2/scores/ukwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: max_leaf_nodes=null, presort="auto", learning_rate=0.01, init=null, center=true, random_state=null, max_features="log2", verbose=0, min_samples_leaf=1, scale=true, warm_start=false, min_weight_fraction_leaf=0.0, balanced_sample_weight=true, max_depth=7, balanced_sample=false, min_samples_split=2, loss="deviance", subsample=1.0, n_estimators=700 - version: 0.3.0 - trained: 2017-01-06T23:35:31.227174 Table: ~False ~True ----- -------- ------- False 18519 928 True 210 192 Accuracy: 0.943 Precision: ----- ----- False 0.989 True 0.172 ----- ----- Recall: ----- ----- False 0.952 True 0.477 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.204 ----- ----- ROC-AUC: ----- ----- False 0.852 True 0.853 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.935 0.511 0.087 True 0.303 0.597 0.095 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.095 0.998 0.981 True 0.938 0.073 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.059 1 0.98 True 0.938 0.073 1 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.059 1 0.98 True 0.874 0.132 0.494 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.059 1 0.98 True 0.443 0.525 0.155
Vietnamese Wikipedia (viwiki)
edithttps://ores.wmflabs.org/v2/scores/viwiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: verbose=0, n_estimators=700, scale=true, presort="auto", min_weight_fraction_leaf=0.0, max_leaf_nodes=null, min_samples_split=2, loss="deviance", min_samples_leaf=1, balanced_sample_weight=true, balanced_sample=false, center=true, subsample=1.0, init=null, max_depth=7, warm_start=false, learning_rate=0.01, random_state=null, max_features="log2" - version: 0.3.0 - trained: 2017-01-07T00:21:37.945283 Table: ~False ~True ----- -------- ------- False 90617 7589 True 336 1458 Accuracy: 0.921 Precision: ----- ----- False 0.996 True 0.161 ----- ----- Recall: ----- ----- False 0.923 True 0.813 ----- ----- PR-AUC: ----- ----- False 0.995 True 0.457 ----- ----- ROC-AUC: ----- ----- False 0.956 True 0.96 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.668 0.876 0.098 True 0.415 0.86 0.098 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.027 1 0.984 True 0.966 0.14 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.027 1 0.984 True 0.956 0.188 0.927 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.027 1 0.984 True 0.892 0.415 0.463 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.027 1 0.984 True 0.466 0.834 0.152
Wikidata (wikidatawiki)
edithttps://ores.wmflabs.org/v2/scores/wikidatawiki/reverted?model_info
ScikitLearnClassifier - type: GradientBoosting - params: scale=true, balanced_sample=false, max_depth=7, max_features="log2", warm_start=false, min_samples_split=2, init=null, verbose=0, max_leaf_nodes=null, balanced_sample_weight=true, loss="deviance", center=true, subsample=1.0, learning_rate=0.1, random_state=null, presort="auto", min_weight_fraction_leaf=0.0, min_samples_leaf=1, n_estimators=700 - version: 0.3.0 - trained: 2017-01-07T00:46:53.835597 Table: ~False ~True ----- -------- ------- False 11786 1035 True 792 10819 Accuracy: 0.925 Precision: ----- ----- False 0.937 True 0.913 ----- ----- Recall: ----- ----- False 0.919 True 0.932 ----- ----- PR-AUC: ----- ----- False 0.978 True 0.972 ----- ----- ROC-AUC: ----- ----- False 0.977 True 0.979 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.334 0.943 0.099 True 0.397 0.948 0.099 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.886 0.799 0.98 True 0.958 0.664 0.98 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.272 0.952 0.901 True 0.422 0.945 0.9 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0 1 0.537 True 0.001 1 0.516 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0 1 0.537 True 0.001 1 0.516