Research talk:Revision scoring as a service/Work log/2016-02-24
Latest comment: 8 years ago by Ladsgroup in topic Wednesday, February 24, 2016
Wednesday, February 24, 2016
editArabic
edit> revscoring train_test \ > revscoring.scorer_models.RF \ > editquality.feature_lists.arwiki.reverted \ > --version 0.1.0 \ > -p 'max_features="log2"' \ > -p 'criterion="entropy"' \ > -p 'min_samples_leaf=5' \ > -p 'n_estimators=640' \ > -s 'pr' -s 'roc' \ > -s 'recall_at_fpr(max_fpr=0.10)' \ > -s 'filter_rate_at_recall(min_recall=0.90)' \ > -s 'filter_rate_at_recall(min_recall=0.75)' \ > --balance-sample-weight \ > --center --scale \ > --label-type=bool > \ > models/arwiki.reverted.rf.model 2016-02-24 19:00:50,796 INFO:revscoring.utilities.train_test -- Training model... 2016-02-24 19:01:07,650 INFO:revscoring.utilities.train_test -- Testing model... ScikitLearnClassifier - type: RF - params: warm_start=false, class_weight=null, bootstrap=true, oob_score=false, scale=true, min_samples_split=2, max_leaf_nodes=null, balanced_sample_weight=true, n_estimators=640, center=true, min_samples_leaf=5, criterion="entropy", max_depth=null, min_weight_fraction_leaf=0.0, verbose=0, random_state=null, n_jobs=1, max_features="log2" - version: 0.1.0 - trained: 2016-02-24T19:01:07.650387 ~False ~True ----- -------- ------- False 3728 129 True 42 94 Accuracy: 0.9571750563486101 Filter rate @ 0.9 recall: threshold=0.214, filter_rate=0.902, recall=0.904 Recall @ 0.1 false-positive rate: threshold=0.957, recall=0.007, fpr=0.0 Filter rate @ 0.75 recall: threshold=0.434, filter_rate=0.94, recall=0.75 PR-AUC: 0.445 ROC-AUC: 0.95
Sincerly Amir (talk) 19:37, 24 February 2016 (UTC)